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Introduction
Mesoamerican nephropathy (MeN), also known as chronic 

kidney disease of unknown etiology (CKDu), is an unusual form of 
kidney disease specifically not associated with diabetes, hypertension, 
or glomerular nephritis. The unique symptomatic profile of MeN 
includes asymptomatic reduction in glomerular filtration rate, 
hyperuricemia, hypokalemia, tubulointerstitial disease with secondary 
glomerulosclerosis and glomerular ischemia. Unlike most types of 
kidney disease, blood pressure is not elevated, and, in fact, hypotension 
could be considered a feature of the disease. Hyperosmolarity due to 
extreme dehydration activates the vasopressin and aldose reductase-
frutockinase pathways that can lead to renal injury [1]. MeN’s prevalence 
has exploded among young male agricultural workers in Nicaragua 
and El Salvador in the past decade, with sugarcane workers being the 
most acutely affected. Figure 1 shows CKD mortality rates in various 
countries in North America, revealing the striking anomaly for males in 
Nicaragua and El Salvador. Figure 2 shows mortality as a function of age, 
again showing that men 25-59 years old from El Salvador and Nicaragua 
are especially susceptible to CKD mortality, compared to women and to 
other countries in North America.

Between 2005 and 2012, there was a 50% increase in hospitalizations 
for CKD in El Salvador, making it the leading cause of death in adults 
in the country’s hospitals [2,3]. The disease is more prevalent in the 
Pacific lowlands of these countries compared to communities at higher 
elevations (18% vs 1%) [4]. While sugarcane workers are the most 
affected among the agricultural communities, a study by Peraza et al. 
found that those sugarcane workers who work along the Pacific coast 
were ten times more likely to have elevated serum creatinine (a marker 
for kidney disease) than highland workers (p<0.001) [5]. The unique 
symptom profile of CKDu challenges the mind to explain the underlying 

etiology. It seems likely that intense physical labor in tropical heat might 
lead to dehydration that stresses the kidneys. It has also been suggested 
that nonsteroidal anti-inflammatory drugs (NSAIDs), used to ease pain, 
might work synergistically with dehydration to compromise kidney 
function. Other contributing factors may include exposure to pesticides 
and toxic metals, such as arsenic, cadmium, aluminum, iron, and lead 
[6,7]. Mycotoxins such as ochratoxin and aflatoxin have also been linked 
to the disease [8]. But these factors seem inadequate to account for the 
extreme devastation of the disease process.

A study by VanDervort et al. published in 2014 specifically addressed 
the question of whether high temperature or agricultural chemicals were 
the most significant factors in CKDu. They wrote: “High temperatures 
do not appear to strongly influence occurrence of unCKDu proxies. 
CKDu in El Salvador may arise from proximity to agriculture to which 
agrochemicals are applied, especially in sugarcane cultivation” [9]. A 
paper by Clark et al. published in 2016 proposed that the CKD associated 
with sugarcane agriculture in Nicaragua is likely due to a combination 
of glyphosate toxicity and dehydration due to heavy labor in extreme 
heat [10].

A 2014 study on farming communities in El Salvador found that 
96% of the study subjects had contact with agrochemicals [11]. 89% 
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of the study participants were farmers, and 76% experienced profuse 
sweating. Diabetes was present in only 4% of the patients. They proposed 
that “nephrotoxic environmental agents” play a key role in the disease 
process. In fact, another paper from the same issue was aptly titled, 
“Chronic Kidney Disease of Unknown Etiology Should Be Renamed 
Chronic Agrochemical Nephropathy” to draw more attention to this 
aspect of the disease process [12].

Glyphosate is the most common chemical used to induce the 
maturation or ripening of cane in order to increase the sugar content 
at harvest time [13,14]. It is also used to kill weeds and is the most 
widely used herbicide for the eradication of cane stools in preparation 
for new planting [15]. Glyphosate is not the only herbicide used on 
cane, but its fingerprints on CKDu demand a special focus. A series of 
papers by Jayasumana et al. linked glyphosate exposure to a nephrotic 
disease among rice growers in Sri Lanka that is similar to MeN [6,16,17]. 

Urinary excretion of heavy metals and glyphosate were found to be 
markedly elevated in people living in areas where Sri Lankan agricultural 
nephropathy was endemic. It is significant that MeN first appeared in 
the mid 1990’s, just as agricultural usage of glyphosate was ramping 
up. During the period when hospitalizations for CKD in El Salvador 
increased by 50%, the global use of glyphosate for agricultural purposes 
nearly doubled, increasing from 388,729 metric tons to 716,676 metric 
tons [18]. Over the last decade, 6,078,138 metric tons of glyphosate have 
been applied [18]. In 2008, the Monsanto Company, whose Roundup 
herbicides are the largest global brand, signaled its interest in increasing 
cane’s tolerance to glyphosate with the purchase of the world’s largest 
sugarcane breeding company, CanaVialis.

Dietary Factors
A significant marker of MeN is hyperuricaemia, and diet plays an 

Figure 1: Chronic kidney disease (N18; International Classification of Diseases, tenth revision [ICD-10]) age-standardized mortality rate, selected countries, 2000–
2009. Reproduced from Ordunez et al. [2].

Figure 2: Chronic kidney disease (N18, ICD-10) age-specific mortality rate, selected countries, around 2008. Reproduced from Ordunez et al. [2].
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important role in influencing urate synthesis by the liver. In particular, 
both alcohol and fructose are known to increase hepatic urate synthesis, 
and breakdown of purine-rich foods yields urate as a by-product [19]. 
Urate can be toxic to the kidney when it precipitates out, forming crystals. 
It is clear that agricultural workers along the coast in Mesoamerica have 
an increased risk to MeN compared to those working more inland and 
at higher elevations [5]. While this difference has been attributed to the 
higher temperature at sea level, another likely synergistic contributor 
could be increased access to dietary seafood in a coastal region. Seafood 
has high levels of purines, which, through their breakdown, can 
contribute to high urate levels. Seafood is also a good source of heme 
iron, and iron overload, particularly in the context of glyphosate, can 
damage the kidneys. Finally, seafood can be contaminated with toxic 
metals, especially arsenic [20]. A US-based study on a National Health 
Nutrition and Examination Survey (NHANES) population from 2003 
to 2006 found higher levels of urinary arsenic, in both organic and non-
organic forms, for those who consumed seafood on a regular basis [21].

“Lija” is a homemade alcoholic drink that is popular in Nicaragua. 
Consumption of lija is associated with a more than 2-fold increased risk 
to MeN [22]. Lija is sometimes stored in industrial metal containers that 
previously held pesticides. It has also been suggested that heavy metals 
such as lead may have leached into the beverage from processing and 
storage containers. Glyphosate was first patented as a chelating agent  
[23]. As such, it would be effective in leaching metals such as aluminum 
and lead from containers. Fructose from sweetened beverages, popular 
among day laborers in Central America for quenching thirst, is another 
likely contributor to elevated urate [24-27]. A human study on obese 
subjects showed a remarkable differential between glucose and fructose 
in terms of their effects on serum urate [24]. Consumption of fructose 
as 25% of energy requirements for just 10 weeks, compared to glucose, 
induces a highly significant increase in circulating uric acid (p<0.0001). 
The mechanism by which fructose effected this increase is thought to 
be due to depletion of ATP and inorganic phosphate, due to increases in 

fructose-1-phosphate and glyceraldehyde-3-phosphate synthesis from 
fructose. This leads to increased nucleotide degradation into uric acid 
[28]. Fructose may also lead to upregulation of de novo synthesis of 
purines from glycine [29].

A study comparing fructose-fed Sprague-Dawley rats with 
dextrose-fed rats revealed that fructose had a direct toxic effect on the 
kidneys [30]. Fructose-fed rats had greater protein excretion, higher 
serum creatinine, more renal hypertrophy, and higher mortality. 
Histologically their kidneys showed more glomerulosclerosis, tubular 
dilation, tubular atrophy, interstitial inflammation and interstitial 
collagen accumulation. The renal tissue showed higher levels of the 
inflammatory cytokine monocyte chemoattractant protein-1 (MCP-1). 
Dehydration activated the aldose reductase pathway in mouse kidney, 
leading to an increase in renal sorbitol and fructose levels [31]. This 
was associated with renal injury, indicated by an increase in serum 
creatinine and renal MCP-1, proximal tubular cellular injury, and 
renal fibrosis. It was proposed that this could be a model for MeN, 
and that high-fructose drinks could exacerbate the damaging effects of 
endogenously generated fructose in human kidneys.

Smoke Exposure from Burning Cane
The most at-risk group for MeN appears to be sugarcane workers, 

and increased symptom manifestation is linked to the harvest season, 
when strenuous labor is involved with cutting the sugar cane stalks with 
a machete and workers are exposed to smoke from burning cane [32-
36]. Similar to other cane-growing countries, cane fields in Nicaragua 
and El Salvador are burned as close to harvest time as possible to 
reduce leafy material and facilitate transportation and processing. The 
burning of the sugarcane stalks previously exposed to glyphosate at 
harvest time is likely a source of toxic glyphosate-containing fumes, 
further contributing to exposure risk. A study from 2014 showed that 
burnt sugarcane harvesting caused an increase in serum creatinine 

Figure 3: Correlation between age-adjusted End Stage Renal Disease deaths and glyphosate applications and percentage of US corn and soy crops that are genetically 
engineered. Reproduced from Swanson et al. [80].
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and decrease in glomerular filtration rate, along with rhabdomyolysis, 
hypovolemia, systemic inflammation and oxidative stress [32]. A highly 
significant increase in micronucleus formation in oral epithelial cells and 
lymphocytes during the sugarcane harvest season (p<0-.001) suggests 
genotoxicity of chemicals released into the smoke [33]. Jiaqiang et al. 
show the ability of amino acid transporters to transfer glyphosate from 
the nose to the brain then directly into the central nervous system [37]. 
This bypass of the liver could delay metabolism of the molecule. Dermal 
exposure could do the same [38].

Uremic Toxins
One of the key factors in glyphosate toxicity is its ability to act as 

an antibiotic, preferentially killing beneficial species in the gut and 
encouraging pathogens to overgrow [36,39,40]. Clostridia species are 
especially resistant to glyphosate, and they produce multiple uremic 
toxins such as p-cresol sulfate and indoxyl sulfate [39]. In fact, chronic 
CKD is a strong risk factor for C. difficile infection [40]. p-Cresol 
metabolites accumulate during CKD, and there is a shift from sulfation 
to glucorindation upon progression, suggesting sulfate depletion 
[41-43]. Furthermore, proximal tubular epithelial cells transition to 
mesenchymal cells (EMT) upon exposure to p-cresol sulfate, leading 
to fibrosis. Several fungus communities, including Aspergillus, 
colonize sugarcane fields [44-46]. The Aspergillus species produce a 
large number of mycotoxins that are nephrotoxic, such as aflatoxin B1 
(AFB1), ochratoxin A (OTA), and fumonisins [47-51]. Two examples 
of nephrotoxic mycotoxins will be discussed here: AFB1 and OTA. The 
United Nations’ Food and Agricultural Organization estimates that 
25% of all food is contaminated with mycotoxins [52]. Food and fields 
should be considered as exposure pathways since both AFB1 and OTA 
can permeate through the skin [53]. Takahashi et al. found Aspergillus 
flavus and Aspergillus parasiticus, which produce AFB1, in 53% of cane 
field soils sampled and aflatoxin in 89% of sugarcane stems [52]. Thirty-
one patients with CKDu in Sri Lanka showed aflatoxins in 61.29% 
and ochratoxins in 93.5% of urine samples [54]. In Tunisia, OTA was 
detected in the blood of the majority of people with CKDu [55].

Sugarcane can be harvested by machines or cut by hand. Though 
mechanical harvesting can be less expensive than manual labor on 
large plantations, cutting by hand with machetes remains common in 
Mesoamerica [56-58]. Cane cutters cut at the base of the stalk, where 
the most sucrose is located. This also is the main location of fungal 
growth [45]. It is not uncommon for cane workers to chew on raw cane, 
another possible exposure pathway for mycotoxins.

Several studies demonstrate that glyphosate impairs agricultural 
soil ecosystems [57-60]. Even though fungi, bacteria, and plants all have 
the shikimate pathway, glyphosate influences individual organisms 
in different ways [61]. For instance, aflatoxins adapt not only to the 
very high temperatures found on the Pacific coastal plains in Central 
America, where sugarcane is grown, but also to glyphosate [44]. 
Barberis et al. reported, “All strains of Aspergillus section Flavi assayed 
were tolerant to glyphosate.” The use of glyphosate on sugarcane fields 
creates conditions favorable to Aspergillus and their toxic secondary 
metabolites by inhibiting the growth of mycorrhizal fungi and 
stimulating the growth of phytopathogenic fungi [62,63]. These fungi 
use glyphosate as a nutrient and an energetic substrate [58,64]. The 
use of glyphosate was associated with an uptick in cereal diseases from 
Fusarium pathogens in Canada [65].

Bennett and Klich in their comprehensive review of mycotoxins 
state that, “in the absence of appropriate investigative criteria and 
reliable laboratory tests, the mycotoxicoses will remain diagnostically 

daunting diseases [48]. Still, much is known about specific renal 
assaults by mycotoxins. OTA accumulates in the proximal tubule and 
causes oxidative stress and tubular damage [50,66]. It also inhibits 
ATP mitochondrial production [48]. Aflatoxins are carcinogenic, 
mutagenic, toxic to the liver and kidneys and immune suppressants, 
and they inhibit several metabolic systems [48,67,68]. AFB1 induces 
tubular damage and glomerular injury [69]. In animal studies, it 
also provokes oxidative stress in renal tissue [66,70,71]. Cytochrome 
P450 (CYP) enzymes help metabolize and clear most drugs and other 
xenobiotics. In the kidney, they reside predominately in the proximal 
tubules [72,73]. They are located there to deal with proximal tubular 
toxicants like NSAIDs and OTA. Glyphosate inhibits the CYPs [39]. 
The combination of the degradation of tubular integrity and the 
compromise of CYPs could boost the damage from a chemical insult, 
fungal toxicity, or physiological stress.

Glyphosate and Hepatic/Renal Damage
In this section, we review the research literature linking glyphosate 

to hepatic and renal damage, based on human epidemiological studies, 
animal-based studies, and in vitro studies. A cross-sectional interview 
study was conducted in 2011 in communities of the Bajo Lempa 
region of El Salvador, involving 42 males with confirmed MeN [2,3]. 
All of the subjects reported buying and managing pesticides, and 
73.8% specifically reported occupational exposure to glyphosate. The 
mechanism by which glyphosate achieves an increase in sugar to starch 
ratio involves inhibition of phosphoenol pyruvate carboxylase (PEPC) 
[74]. Glyphosate’s inhibition of EPSP synthase, which also has PEP 
as substrate, within the shikimate pathway, is believed to be the main 
mechanism of glyphosate toxicity to plants [75]. As PEP accumulates 
due to suppression of the enzymes that metabolize it, it suppresses its 
own synthesis from fructose, leading to an increase in sugar content in 
the crop.

It can be anticipated that a similar pathology would occur in the 
gut of a human consuming fructose, because gut microbes also use 
EPSP synthase in the shikimate pathway to produce aromatic amino 
acids with PEP as substrate. Excess fructose consumption is believed 
to be a significant factor in fatty liver disease, because the liver converts 
fructose to fatty acids in order to prevent it from reaching the general 
circulation [76]. Fructose is ten times as potent as a glycating agent as 
glucose, and therefore it is essential for the liver to clear it from the 
circulation. Metabolomic and proteomic analysis showed activation of 
biomarkers linked to non-alcoholic fatty liver disease and subsequent 
steatohepatitis in response to ultra-low doses of glyphosate-based 
herbicides [77]. Ultrasound examination indicated fatty liver disease 
in 93.5% of patients in El Salvador suffering from MeN [11]. Excess 
fructose exposure in the liver will also increase the hepatic production 
of urate. An epidemiological study by Swanson et al. examined 
correlations between the rise in incidence of a large number of 
debilitating diseases and glyphosate usage on core crops in the United 
States [78]. In particular, Figure 1 in this paper (reproduced here as 
Figure 3) shows a striking correlation between deaths due to end 
stage renal disease and glyphosate usage between 1997 and 2010. The 
correlation coefficient was 0.975 with a p-value of 7.24E-9.

A study based in China involved 80 cases of poisoning by glyphosate 
through intentional ingestion of Roundup [79]. Multiple organs were 
affected, but especially the gastrointestinal tract. Fourteen percent 
of the 80 cases experienced renal damage. A characteristic symptom 
preceding death (which occurred for 7 patients) was severe hypotension 
unresponsive to either intravenous fluids or antihypotensive agents 
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(vasopressor drugs). As we argue in a companion paper, we believe that 
glyphosate can disrupt the function of aquaporin, which is normally 
upregulated in the renal tubules in response to vasopressin and protects 
from renal water loss through urine. In a study of 245 patients in a 
Korean population, 26% of patients exposed to toxic levels of glyphosate 
developed hypotension, and this was associated with elevated levels of 
creatinine as well as long QTc interval [80]. Hypokalemia, a key feature 
of MeN, is one of the most important risk factors for QT prolongation 
[81]. Long QT syndrome is associated with kidney disease [82,83]. In 
a study of patients with chronic renal failure, 41% suffered from QT 
prolongation, and this was correlated with the number of years of 
kidney failure and with low serum potassium and calcium levels [82].

A study on rats involving a low-dose exposure to Roundup and/
or GM Roundup-Ready feed over the entire lifespan revealed damage 
to the liver and kidneys, increased risk to various tumors, and early 
death in the treatment groups [84]. The authors noted that 76% of 
the discriminant variables versus controls were kidney-related. A 
subchronic toxicity study on rats exposed to 375 mg/kg glyphosate 
for eight weeks showed damage to the stomach, pancreatic acinar 
cells, spleen, brain, liver and kidney [85]. Through histopathological 
examination of the kidneys, the authors noted glomerular degeneration, 
mononuclear cell infiltration into the interstices of the tubules, and 
tubular necrosis. Prior supplementation with zinc ameliorated these 
effects. Serum urea is an indicator of an excessive breakdown of 
proteins and/or insufficient clearance due to kidney disease. A linear 
relationship between serum urea levels and urinary glyphosate was 
found in a study on dairy cows exposed to high levels of glyphosate 
in their GMO feed [86]. A study comparing patients with CKD with 
controls revealed a highly significant doubling on average of the serum 
urea levels (p<0.001) [87]. Glyphosate increases the production of 
reactive oxygen species, resulting in oxidative stress, especially in 
the liver, kidneys and testis [77,88,89]. Consistent with this, a comet 
assay study revealed DNA damage in subjects from Ecuador exposed 
to glyphosate, suggesting a genotoxic effect of glyphosate [90]. An in 
vivo transcriptome investigation involving female rats exposed to ultra-
low doses of Roundup (50 ng/L glyphosate equivalent) demonstrated 
an increased incidence of liver and kidney pathologies [91]. A chronic 
glyphosate-exposure study on 198 male mice carried out by Bio/
dynamics in 1983 and submitted to Monsanto found four cases of renal 
tubule adenomas, an extremely rare kidney tumor, among the exposed 
mice [92]. The probability of observing this rare tumor four times in 
198 mice is p=0.0064, when considering the historical controls of the 
same laboratory.

Urate
A paper from 2015 argued that MeN might be a uric acid disorder 

[31]. Male workers exposed to heat stress along with physical exertion 
are predisposed to recurrent water and volume depletion, often 
accompanied by urinary concentration and acidification. Uric acid 
is generated during heat stress, in part because of nucleotide release 
from damaged muscles. Crystal formation in the kidneys is then the 
source of renal damage. These authors confirmed that urate crystals 
were commonly found in the urine of sugarcane workers in El Salvador. 
Elevated serum uric acid was a consistent metric for MeN in a study 
based in El Salvador [34]. A recent study on patients with MeN in 
northwestern Nicaragua compared their disease metrics with those 
associated with members of the NHANES database suffering from 
CKD. Multivariable regression analysis revealed that serum uric acid 
levels were on average 2 mg/dL higher in patients with MeN compared 
with their NHANES counterparts [87].

Hyperuricemia is directly associated with progressive kidney 

failure [93-95]. Hyperuricemia is also an independent risk factor for 
later development of CKD [96-99]. Acute uric acid nephropathy occurs 
following renal tubular obstruction by uric acid crystals. As the pH 
becomes more acidic during the course of concentration of urine in 
the tubular system, the concentration of urate needed for precipitation 
of crystals goes down. In animal models of uric acid nephropathy, 
precipitation of uric acid crystals obstructs the tubules, collecting ducts, 
pelves and ureters. Crystal deposition increases tubular and intrarenal 
pressure, and compression of the renal venous network causes an 
increase in renal vascular resistance and a fall in renal blood flow. This 
can lead directly to a decline in glomerular filtration and a direct path 
to acute renal failure.

Elevated serum urate can contribute to renal damage even in the 
absence of crystal formation [100]. It has been shown that uric acid 
contributes to endothelial dysfunction in part by suppressing the 
synthesis of nitric oxide (NO), a signaling gas that relaxes smooth 
muscles, promoting vascular flow. Thus, uric acid can induce vascular 
constriction in the renal tubules, promoting a hypoxic state that induces 
an inflammatory response. This would work synergistically with 
tubular fibrosis to deplete oxygen supply to the tubular epithelial cells. 
Hyperuricemia in rats caused an increase in macrophage infiltration 
even in the absence of crystal formation [101]. Uric acid levels in 
humans are linked to preglomerular arterial disease [25]. Decrease 
in renal blood flow causes injury to the proximal tubules by depleting 
ATP, disruption of calcium homeostasis, and the generation of free 
radicals [102]. Damaged tubular cells are released into the tubular 
lumen causing obstruction.

ACTH
Adrenocorticotropic hormone (ACTH) is neuroprotective in 

chronic kidney disease, as well as in acute kidney disease [103-105]. 
Tumor necrosis factor α (TNF-α) is a key cytokine expressed in the 
inflammatory response. Injection of TNF-α into the kidney elicits 
massive cellular apoptosis in the tubules. The typical response pattern 
includes acute tubular necrosis, characterized by vacuolization of 
proximal tubular epithelium, epithelial necrosis, sloughing of tubular 
cells into the lumen, loss of the brush border, nuclear enlargement and 
prominent inflammatory infiltration. Remarkably, a dose of ACTH gel 
of 10 IU/kg greatly ameliorated these histological lesions [105].

Multiple studies have shown that Roundup suppresses the release 
of ACTH by the pituitary gland [106-108]. A study exposing rats 
to 10 mg/kg per day of Roundup for two weeks revealed reduced 
production of corticosterone by the adrenal glands, despite the fact 
that the ACTH receptors remained intact [106]. Exogenous treatment 
with ACTH rescued steroidogenesis in the exposed rats. They proposed 
that Roundup disrupts the hypothalamic-pituitary axis leading to 
reduced expression of ACTH by the pituitary gland. Cericato et al. have 
demonstrated that fish exposed to sublethal doses of glyphosate have 
an impaired capacity to raise cortisol levels in response to stress [107]. 
A later paper by the same authors showed that glyphosate’s suppression 
of cortisol production in interrenal tissues in fish (corresponding to the 
adrenal glands in mammals) is caused by its disruption of the release of 
ACTH from the pituitary gland [108].

Addressing the MeN Epidemic
We have postulated that glyphosate is the cause of Mesoamerican 

nephropathy (MeN), with the synergistic involvement of several co-
factors having a role in its progression to end-stage renal failure. 
Perhaps with the mounting evidence of glyphosate’s toxic effects, the 
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elimination of the herbicide on sugarcane in Central America is not an 
unreasonable public health goal. In the meantime, is there something 
that can be done to halt the progressive deterioration of renal function 
in cane workers? MeN is an occupational disease [109]. So what would 
workplace intervention look like on a sugarcane plantation? It might 
include actions by management to: reduce agrochemical exposures; 
prevent dehydration and heat stress; recognize and treat rhabdomyolisis 
without the use of acetaminophen or NSAIDs; stop burning cane; 
record and publicly share data on the use of agricultural chemicals 
(what, when, where, how much); and acknowledge poverty as a social 
determinant of MeN by increasing wages and other worker support.

What else can be done? Climate change should be recognized as a 
co-factor in MeN [110-112]. The increase in temperatures in already 
hot places like the Pacific coastal plains in Central America impact 
MeN in at least two ways: more heat stress and dehydration. It should 
be noted that increasing ethanol production as a substitute for fossil 
fuels is problematic in the framework of MeN mitigation. Sugarcane 
is a common feedstock for ethanol production. For instance, in Brazil, 
the world’s largest grower of sugarcane, the majority of harvested 
sugarcane is used to make ethanol [113,114]. The cost of increased cane 
production to meet global demand for ethanol is not only worker health 
but also the loss of land for small farmers, deforestation, and water 
pollution [115-117]. Unless the conditions for growing, managing, and 
harvesting sugarcane are changed to reflect our greater understanding 
of MeN, increasing sugarcane acreage to boost ethanol sales will also 
likely increase deaths from chronic kidney disease among cane workers.

Numerous studies about supportive therapies for acute kidney 
injury and CKD are available, but Mesoamerican nephropathy has not 
been slowed or stopped [118-120]. For example, in El Salvador and 
Nicaragua, from 1990 to 2009, male death rates from kidney failure 
increased 458% [121]. Very few patients in Central America with end-
stage renal failure receive dialysis or kidney transplants [122]. The 
complex physiological processes that are part of MeN and the lack of 
consensus about its cause help contribute to poor health outcomes 
[87,123]. Nevertheless, the specific site of injury to the kidney in people 
with MeN and the mechanisms of harm caused by glyphosate give 
important clues to how cane workers – without access to advanced 
medical care and with limited finances – might treat renal assaults.

Intestinal fibrosis and tubular injury are clinical features of MeN 
[87,124-127]. Novel therapies that help prevent intestinal fibrosis and 
protect the tubules include heparin; ACTH gel; oxygen free radical 
scavengers such as ginseng, curcumin, alpha-lipoic acid (ALA), 
Vitamin E, and propofol; and trace elements such as selenium and 
zinc [70,105,128-131]. It should be noted that the National Kidney 
Foundation advises against the use of all herbal supplements [132]. 
Research opportunities abound for the clarification of advice with 
regard to the use of supplements for the treatment of kidney injuries, 
and also to address the inflammation and oxidative stress commonly 
associated with MeN.

Low-level light therapy (LLLT) may modulate chronic kidney 
disease progression [133]. LLLT seems especially promising because of 
its ease of use and low cost. It is also non-invasive and painless. In one 
animal study, LLLT had a protective effect on renal interstitial fibrosis 
[134]. Another study showed improved renal blood circulation in 58% 
of patients along with increased diuresis, and improved filtration and 
concentration functions [135]. In Brazil, the Federal University of 
Health Sciences of Porto Alegre has an on-going clinical trial looking at 
LLLT treatment for chronic kidney disease [136].

As with all disease prevention and treatment, diet is of critical 
importance. Probably the three most important interventions with 
regard to diet and MeN would be the elimination of glyphosate and 
reduction of fructose from the diet, and securing chemical and 
pathogen-free water [30,87,137-140]. The consumption of alcohol 
has been identified as a possible co-factor in MeN [22]. What may be 
particularly significant is the kind of alcohol consumed. Sanoff et al. 
showed that homemade liquor (lija) consumption in Nicaragua was 
associated with increased odds of having renal injury [22]. Homemade 
liquor does not always cause health problems, but it can under certain 
process or storage conditions [141]. If the liquor collected and used for 
drinking is from the beginning or the end of the distillation process, 
when the temperatures are not ideal for making ethanol, it can be 
poisonous. Toxicants such as pesticides and heavy metals can come 
from contaminated containers used in either the distillation process 
(for example, car radiators) or storage. Another issue is the proof of the 
liquor. Higher proof liquor has less water in it. It can exacerbate already 
critical dehydration problems. A treatment intervention that is unlikely 
to work is to tell people not to drink lija. What may instead have positive 
results is education about how to make homemade alcohol safer for 
consumption, along with frequent hydration with clean water during 
consumption.

A feasible large-scale experiment that could help determine 
glyphosate’s role in CKDu would be to compare cane cutters with no 
occupational exposure to glyphosate with cutters with occupational 
exposure to the herbicide. It would be necessary to monitor other risk 
factors in the experiment, matching the work conditions as closely 
as possible between the two groups. Organic sugarcane is grown in 
the Americas, with the most acreage in Paraguay, Argentina, Cuba, 
Columbia, Mexico, Ecuador, and the United States (data on Brazil is 
unavailable) [142,143]. Disease surveillance of sugarcane cutters at 
organic sugarcane plantations could be compared to cane cutters that 
work in fields where glyphosate is used.

Conclusion
CKDu is a global disease of increasing prevalence. CKDu has been 

identified in Nicaragua, El Salvador, Guatemala, Honduras, Costa Rica, 
Panama, Mexico, Egypt, Sri Lanka and India, with markedly fewer cases 
in Cuba, Dominican Republic and Brazil, possibly because of access to 
better medical care for workers [10,142,144,145]. However, in Brazil, 
the largest producer of sugarcane in the world, it has been postulated 
that CKDu is either underdiagnosed or undertreated [146]. A number 
of known risk factors appear to contribute to chronic kidney disease 
in Mesoamerican agricultural workers, but they do not explain the 
meteoric rise of kidney failures. Glyphosate exposure not only damages 
the kidneys directly, but also can be predicted to increase the damaging 
effects of multiple other factors, most significantly urate synthesis from 
fructose, exposure to mycotoxins and metal toxicity. The health crisis 
among sugarcane workers on the Pacific coast of Central America can 
be addressed in numerous ways, but the action most likely to prevent 
end-stage renal failure is to stop using glyphosate on sugarcane.

We would like to close with a quote from an editorial by Dr. 
Andrew Campbell, who summarizes well our own feelings on this 
subject: “No one should be surprised that this chemical compound, the 
world’s number one herbicide, glyphosate, can be toxic. We regularly 
add chemicals to our ecosystem only to find out years or decades later 
that we should have been more diligent in making sure all the effects of 
these chemicals had been studied. This is the time for all of us to read 
again Rachel Carson’s “The Silent Spring’’ [148].
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